NOTATION

o, Average heat-transfer coefficient; F, area of heat-transfer surface of duct; Atlo » log-mean temper-
ature difference; Q, quantity of heat; ty, average wall temperature; ty, tj44, thermocouple readings; 14, ther-
mocouple spacing; k, humber of thermocouples; NuQ, £ oo average Nusselt number and coefficient of hydraulic
friction for smooth duct; Nu, £, the same for the duct with intensifier; Re, Reynolds number; a, flow swirl
angle; u, effective viscosity of fluid; Cp, specific heat at constant pressure; A, thermal conductivity; D, in-
side diameter of duct; d, diameter of central stem of intensifier; p, density of fluid; I, length of duct.
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COUPLED PROBLEM OF STEADY-STATE HEAT TRANSFER
DURING TURBULENT FLOW OF LIQUID THROUGH A PLANE
SLOT WITH DISSIPATION OF MECHANICAL ENERGY

A. A. Ryadno and N. V. Franko UDC 536.24

An analytical solution is obtained for the coupled problem of steady-state heat transfer during
turbulent flow of a liquid through a plane slot with dissipation of mechanical energy.

The problem of steady-state heat transfer during turbulent flow of the coolant and the need to account for
dissipation of mechanical energy in the analysis of this problem arise in practical applications {1] such as
transport of crude oil under conditions of Northern climate [2].

We make the following assumptions: 1) The flow of the fluid and the heat transfer are both quasisteady;
2) the fluid is incompressible and its physical properties remain constant; 3) the change in the thermal flux
density along the axis caused by heat conduction and turbulent heat transfer is small in comparison with its
change in the transverse direction [1]; 4) the flow through the heat-transfer region has been hydrodynamically
stabilized; 5) the temperature of the liquid and the slot wall in the entrance section is a known function of the
transverse coordinate y; 6) the temperature of the outside surface of the slot is given as an arbitrary integrable
function of the axial coordinate x.

The problem will be formulated as a system of equations in dimensionless variables: equation of energy

for the liquid
00, _ 0 [ Re g | 09, Br /& < € ) [ AW 2
W (Y = — - - — | ]
()X {250( +v)6Y]+PY‘/8I+V(dY>

0<<X (oo, 0TV <},

(1)

equation of heat conduction for the wall
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and the conditions of coupling for the femperature fields
06, (X, 1) 90, (X, 1)
=K » O (X, h=6,(X, = . 8
v r oy (X D) =6,(X, 1) =x(X) (8)

We let function ¢(X) reach a finite value at X — « and let the unknown function at the coupling boundary be the
temperature at that boundary, assuming also that Npy gy,ph = 1.

For channels of simple geometrical shapes there are several semiempirical relations available which
describe the velocity profile and yield the coefficients of turbulent momentum transfer. In this study will be
used the Pey relations for the velocity profile W(Y) and the coefficient of turbulent momentum transfer e /v.

The problem (1)-(8) can be solved by the method of finite differences {4, 5] or an exact analytical solution
can be obtained {6], but the approximate analytical solution proposed here is more convenient for an analysis
of coupled heat-transfer processes and engineering calculations.

The solution to the system of Eqs. (1)-(8) will be sought as the sum of two functions
0, (X, ¥Y) =0y, (V) + 0,5 (X, V), 9

8, (X, ¥) = By, (V) + Oox (X, V). (10)

For determining these functions we obtain from Eqs. (9) and (10) four interdependent equations with corre~
sponding boundary conditions

d [Mre (1 sn)a@m NBr}/z( %)(,W)? 46y (0)
LR ()T o 2 =0, ZwO)_ g 1
dY[2§0\_Pr+v, ay} vV BT ) ) =0 Ty =0 ay
d2®2w -0, {(12)
day?
00 1 00 1
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Oox (0 Y) = fo— By, (V) Osx (X, 8) = ¢ (X) — By, (), (14)

O1x(X, 1) = @zx(X, D =2(X) — e = 1 (X),
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Integrating Egs. {(11) and (12) yields
28 ./ E N n( . 80) aw \?
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GEW (Y) == Cg + C&Y.

The integration constants are determined from the conditions of coupling and the boundary conditions, with
functions &4 /v and W(Y) given.

Equations (13) and (14) were solved by a procedure involving concurrent application of the Laplace inte-
gral transformation and the orthogonal Bubnov—Galerkin method [7, 8]. Application of the Laplace integral
transformation with respect to coordinate X yields in the transform domain _

&5 ) 88 x (p, V) ] ,

PW (Y)81x(p, ¥)—W (V) (fy— Oy (V) = ggi W[(ﬂpf v

v 14
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For the solution in the transform domain, the Bubnov—Galerkin method yields

N
B1x(p, V) =7 (p) + 20 () g4 (),
h=:1

Bralp, V) =% o () — B (V) };‘ (7) W (7).

The transform coefficients ak(p; and tk(p) are determined from the condition of orthogonality for the discrepancy
in all coordinate functions g(Y) and ¥ (¥). For ak(p) and tk(p) we obtain the fwo systems of algebraic equa-
tions of orders N and M respectively

N
2 (Aks + PBri) ax (p) = pya (p) Es + Gy, (15)

k=1

M
gl (@i + Pb23) B (P) = Lip™11 (p) + Eip + 5, ' (16)

where .
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The coordinate functions g (Y) are selected in the form
GV =WmWY**™ b1 9 .. . N

The functions ¥ (Y) are found from the solution to the corresponding Sturm—Liouville problem

Y, (V) = sin k= g“l L h=1,2 ... M

The solution to system (15), (16) is obtained according to Cramer's rule

A (p) —(p) | M,k:l, 2, ... N,

o (p) = A ) () + = )
7 1k D, Dg. (p) _
t(p) = DD(( )) P (p) + D“(;’;) + Dk(p) L k=192 ...N,

where A(p) and Ay (p) are respectively the principal determinant and auxiliary determinants of system (15),
D(p) and Dpk(p) (@ =1, 2, 3) are respectively the principal determinant and auxiliary determinants of system
(16). Function ¥;(p) is found from the condition of coupling.

Using the expansion theorem for inverse transformation, we obtain the solution to problems (13) and (14)
O1(X, V) = % (X) + {f % ( >2 Ai“((” ;) exp [py (X — byl dt

- ‘_Af_k(ﬂi’)l)“ exp (ij)} g (Y),

8 (X, V) =1 (X) i’ }‘{ j l(t)E”' ,m(p])exp[p,-(X—t)]dt

PiDgr (p5) + Dan (py) X0, ().
+E P xp (0] ¥ 1)

With the aid of expressions (9) and (10), we then obtain the solution to the boundary-value problem (1)-(8).

Using the thus obtained analytical solutions, one can calculate the mean-mass temperature @y, of the
liquid as well as the Nusselt number and other characteristics of the heat transfer. The mean-mass temper-
ature and the general Nusset humber were indeed calculated numerically in this way, by the Bubnov—Galerkin
method in the third-order approximation with a constant temperature of the wall and the liquid in the channel
entrance section [f; =f; =0, ¢(X) =1]. These calculations indicate that sufficiently reliable results can thus
be obtained for the characteristics of heat transfer when 6 < 2. The changing of the mean-mass temperature
of the liquid during cooling, with Nge = 10* and Npy = 0.7, is shown in Fig. 1. The graph indicates that the
cooling process can be slowed down appreciably by an increase of the wall thickness and a decrease of its ther-
mal conductivity. The variation of the general Nusselt number [9] along the channel, with 6 =1.005 and Ky =
1000, during cooling and during heating of the liquid is shown in Fig. 2a and b respectively. The maximum value
of the Nusselt number, Ny, = 25.6 when Ny, = 0, agrees with the result of another study [10].

The results of this study suggest that dissipation of mechanical energy can greatly increase the local val-
ues of the heat-transfer coefficient. Such an increase is attributable, first of all, to a radical restructurization
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Fig. 1. Variation of the mean-mass
temperature of the liquid (Ngo =104,
Npy =0.7): 1) Ngy =0, 6 =1.005,
K, =1000; 2) Ng, ==0.1, 6 =1.005,
Ky =1000; 3) Ngy =—0.1, 6 =1.2,
K}\' = 203 fi =f2 =0; (P(X) =1.
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Fig. 2. Variation of the Nusselt number along the channel with
thin wall when (a) Ngy < 0 and (b) Ng, > 0: Nge =10% Npy =
0.7; 6 =1.005; K =1000; £ =f, =0; ¢ =1.
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Fig. 3. Variation of the Nusselt number along the
channel with energy dissipation as well as channel
dimensions and thermophysical properties of ¢han-
nel wall and of liguid taken into account.

of the temperature profile in connection with the sharp increase of the temperature gradients at the channel
walls, where mechanical energy is dissipated with particularly high intensity. During heating this dissipation
of energy can result in reversals of the thermal flux (negative values of the Nusselt number, physically mean-
ingless).

The dependence of the heat-transfer intensity on the thermophysical properties of the wall and of the liquid
as well as on the channel dimensions is shown in Fig. 3. A comparison of the data here with those in Fig. 2a
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reveals that decreasing the thickness of the channel wall and decreasing the ratio K; will appreciably decrease
the length of the initial thermal channel segment and decrease the Nussell number within this segment. The
results of these calculations and the thus obtained analytical solution to the coupled problem of convective heat
transfer can be utilized for studying the role of dissipation processes in the heat transfer during turbulent flow
of a liquid through a plane slot and the dependence of that heat transfer on the thickness of the slot wall and on
the properties of the wall material.

NOTATION

@y = (bt —tg)/ (ty—ty): @y = (ty — to)/(tyy—tg), Dimensionless temperature of the liquid and dimensionless
temperature of the wall, respectively; x, axial coordinate; y, transverse coordinate; X = 4x/Npe2h and Y =
h/y, dimensionless coordinates; v, = w(¢/ 8)1/2, dynamic velocity; w, section velocity of the liquid; ¢, fric-
tion coefficient; 2h, inside slot dimension; 2hy, oufside slot dimension; v, kinematic viscosity; g4, eddy vis-
cosity; u, dynamic viscosity; W(Y) = wy/vy, dimensionless velocity profile; Wy axial projection of the ve-
locity vector; Aj (1 =1, 2), thermal conductivity of the liguid and of the wall material respectively; a, thermal
diffusivity of the liquid; Nge = w2h /v, Reynolds humber; Npy = v/a, Prandtl number; Ngy = pW¥#A 4ty — to)>
Brinkman number; £¢ =hvy/»; 6 =hy/h; Ky =Ay/Ay; t, temperature in the entrance section of the heat-
transfer segment; t,,, temperature of the external surface of the tube wall on the heat exchanger surface; @y
@qys solutions to problems (11) and (12); and p, variable of Laplace integral transformation.
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