
NOTATION 

~, Average heat-transfer coefficient; F, area of heat-transfer surface of duct; Atlog, log-mean temper- 
ature difference; Q, quantity of heat; ~w, average wall temperature; tl, ti+ I, thermocouple readings; I i, ther- 
mocouple spacing; k, number of thermocouples; Nu0, ~ 0, average Nusselt number and coefficient of hydraulic 
f r ic t ion  for  smooth duct; Nu, ~, the s ame  fo r  the duct with intensif ier ;  Re, Reynolds number ;  ~, flow swir l  
angle; p ,  effect ive v iscos i ty  of fluid; Cp, speci f ic  heat  at  constant p r e s s u r e ;  k ,  t he rma l  conductivity; D, in-  
side d i ame te r  of duct; d, d i am e t e r  of centra l  s t e m  of intensif ier ;  p, densi ty of fluid; l, length of duct. 
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C O U P L E D  P R O B L E M  OF S T E A D Y - S T A T E  H E A T  T R A N S F E R  

D U R I N G  T U R B U L E N T  F L O W  OF L I Q U I D  T H R O U G H  A P L A N E  

S L O T  W I T H  D I S S I P A T I O N  OF M E C H A N I C A L  E N E R G Y  

A.  A .  R y a d n o  a n d  N.  V .  F r a n k o  UDC 536.24 

An analyt ical  solution is obtained for  the coupled p rob lem of s t eady- s t a t e  heal  t r a n s f e r  during 
turbulent  flow of a liquid through a plane s lot  with d iss ipat ion of mechanica l  energy.  

The p rob lem of s teady-sLate  heal  t r a n s f e r  during turbulent  flow of the coolant and the need to account for  
d iss ipat ion of mechanica l  energy  in the analys is  of this p rob lem a r i s e  in p rac t ica l  applicat ions [1] such as 
t r a n s p o r t  of crude oil under  conditions of Nor thern  c l imate  [2]. 

We make the following assumpt ions:  1) The flow of the fluid and the heat  t r a n s f e r  a re  both quasis teady;  
2) the fluid is incompress ib le  and its physical  p r o p e r t i e s  r ema in  constant; 3) the change in the t he rma l  flux 
density along the axis caused by heal  conduction and turbulent  heat t r a n s f e r  is smal l  in compar i son  with its 
change in the t r a n s v e r s e  d i rec t ion [1]; 4) the flow through the h e a t - t r a n s f e r  region has been hydrodynamical ly  
s tabi l ized;  5) the t e m p e r a t u r e  of the liquid and the s lot  wall  in the ent rance  sect ion is a known function of the 
t r a n s v e r s e  coordinate y; 6) the t e m p e r a t u r e  of the outside sur face  of the s lot  is given as an a r b i t r a r y  in tegrable  
function of the axial coordinate x. 

The p rob lem will  be fo rmula ted  as a s y s t e m  of equations in d imens ion less  var iab les :  equation of energy 
for  the liquid 

0 ~ X . ~  oo, O ~ Y ~ I ,  

equation of heal  conduction for  the wall  
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with the boundary conditions 

4 820~ .~ O~O~ - -  O, 

Re z 8X ~. c3y2 

O < X  < co, I < Y < 6 ~  

O 1 (0, Y) = f~ (Y), 

801 (X, O) O, 
8Y 

(2) 

(3) 

(4) 

e~ (0, Y) = fi (y), 

e~ (x, 8) = ~ (x), 

(5) 

(6) 

r x=~ = O@~OX x=~= O; (7) 

and the conditions of coupling fo r  the t empera tu re  fields 

ao,{x, l ) = K  ao~(x, 1) e l (x,  1)=e,,{x,  1 )=z(x ) .  (8) 
aY OY ' " " 

We let  function 9(X) reach  a finite value at X ~ o@ and let the unknown function at the coupling boundary be the 
t empera tu re  at that boundary, assuming also that N p r , t u r  b = 1. 

F o r  channels of simple geomet r ica l  shapes there  are  severa l  semiempi r ica l  relat ions available which 
descr ibe  the velocity profi le  and yield the coefficients of turbulent  momentum t rans fe r .  In this study will be 
used the Pey relat ions for  the velocity profi le  W(Y) and the coefficient  of turbulent  momentum t r an s f e r  r 

The problem (1)-(8) can be solved by the method of finite d i f ferences  [4, 5] or  an exact  analytical  solution 
can be obtained [6], but the approximate analytical  solution proposed here  is more  convenient for  an analysis 
of coupled h e a t - t r a n s f e r  p roces se s  and engineering calculations.  

The solution to the sys tem of Eqs.  (1)-(8) will be sought as the sum of two functions 

@z (X, Y) = Olw (Y) ~- @ix (X, Y), (9) 

@, (X, Y) = @~ w (Y) ,-F e2x (x,  Y). (10) 

For  determining these functions we obtain f rom Eqs. (9) and (10) four interdependent equations with co r re -  
sponding boundary conditions 

d-~ L 2~ 0 ~ Pr ~ j  q - - ~  1 + t dY ] --0,  dY  -~ 

dZe2w = O, (12) 
d y  2 

e@ w (5) = ,  (oo), e,w (1) = e ,w  (t)  = z - ,  ae ,~  (1) K ~ - a ~  _.  
" 8 Y  O Y  ' 

w(Y) ao,x a [N,~ ( 1 + ~o ~ ae,.c 
a x  - a Y  l 

e~x(O, Y ) = f i - - O ~ w ( Y ) ,  a e l x ( X ,  0) =0; 
aY 

4 OzO~x a~O2x 
§ o, 

N~e OX z OYZ 

O2x (0, Y) = s - -  e2 w (Y) ,  O2x (x,  5) = ~ (x)  - -  02~ (Y), 

O~x(X, l) = O2x(X, l) = z ( x ) - - z ~  = zl(X), 

(13) 

(14) 

989 



Integrating Eqs.  (11) and (12) yields 

O~w (Y) = c~ + c~ 
9 

O0~x.(X, 1) - K z  O02x(X, 1) 
OY OY 

r Npr  ~ v 

NRe l/ 8 Npr ~ dY 

(3.. w (Y)  - -  c3 + c~Y. 

dY, 

The integration constants a re  determined f rom the conditions of coupling and the boundary conditions, with 
functions ecr/u and W(Y) given. 

Equations (13) and (14) were  solved by a procedure  involving concur ren t  application of the Laplace inte-  
gral  t ransformat ion  and the orthogonal Bubnov-Ga le rk in  method [7, 8]. Application of the Laplace integral 
t ransformat ion  with respec t  to coordinate X yields in the t r an s fo rm  domain 

Re 0 [ (  1 co) 06)ix(p, Y) ] 
PW(Y)OIx(P' Y ) - - W ( Y ) ( f l - - O l w ' ( Y ) ) =  2~ o OY Npr+--4 - OY ' 

O0~x (p, O) 
- O, "~,,,: (p, t) = ~ (p ) ,  OY 

4 - 
~Re [PZO2x (p' Y) --  p (f2 --02,w (Z))] - -  

4 O02x (X, Y) I + c126zx (p' Y) 
--  ~ OX ,x=o dy z -- O, 

b2x (p, 1) = X-~ (P), e32x (p, 6) - -~ (p) - -  ~ (~), 

Oblx(p, 1) : Kz-ae)2x(p' 1) 
OY OY 

For  the solution in the t r ans fo rm domain, the Bubnov-Gale rk in  method yields 

N 

~)lx (p, Y) - X~ (P) + . ~  ak (p) g~ (Y), 
h : l  

M 

~  (P' Y) = xl ~ - Y Z a-----i- + (~ (p) - o ~  (r)) r -  1 + -~ ~ (p) v~ (r) .  
" 6- -1  

The t r a n s f o r m  coefficients ~k(p) and~k(p) a re  de termined f rom the condition of orthogonality for  the d iscrepancy 
in all coordinate functions gk(Y) and ~k(Y). F o r  ~k(P) and tk(p) we obtain the two sys tems  os a lgebraic  equa- 
tions of o rders  N and M respect ive ly  

N 

Z (Akj + pB~d) ~ (p) : p~ (p) Ej + Gj, (15) 
h ~ l  

M 

Z (ahj -? pZbhj) L (P) = liP~l (P) + ~jp q- v j, (16) 
h = l  

where 1 

' 0 1 

oY ] gj (Y) dY; 
0 

1 

Bk~ = --  S IV (Y) gh (Y) gj (Y) dY; 
0 

I 1 

Z~ :-: .f ~ (r)  gj (Y) dY; ~: = - -  j' W (Y) ( f l - -  01,~ (Y)) gj (Y); 
0 0 

9 9 0  



6 
O 

l j - -  

1 

6 
4 

ar (Y) 
ag 

f 6 - - Y  ~j 
N~e 6 - -  1 

i 

6 
4 , , _  % j" 

6 

T~(g) dY; bhj= 4~Re ~ ff ~ ( y )  Ti(y)dy; 
1 

6 

(Y))Ts(Y)dY; (y) d r ;  ~j = N~ 

1 

OO~(X,ox Y) x = Z  j(Y)dY" 

The coord ina te  funct ions  gk(Y) a r e  s e l e c t e d  in the f o r m  

gh(Y) =- W (Y) Y 2(~'-I), k=  1, 2 . . . .  N. 

The functions ~k(Y) are found from the solution to the corresponding Sturm-Liouville problem 

Y r l  
Tk(Y) = s i n k ~ ,  k = 1, 2 . . . .  M .  

6 - - 1  

The solution to system (15), (16) is obtained according to  Cramer's rule 

an(P) _ Aak(p) P~x(P)-- A2,(p) , k-~ 1, 2 . . . .  N, 
A (p) A (p) 

( p ) =  D~h(P) pa~(p) ~ D2h(P) [_ D3k(P) , k =  1, 2 .... N, 
D (p) D (p) D (p) 

where A(p) and Ajk(P) are respectively the principal determinant and auxiliary determinants of system (15), 
D(p) and Dnk(P) (n = i, 2, 3) are respectively the principal determinant and auxiliary determinants of system 
(16). Function ~(p) is found from the condition of coupling. 

Using the expansion theorem for inverse transformation, we obtain the solution to problems (13) and (14) 

N X 

e~ (x, Y) = z~ (x) + ~ zl (0 a' (pj) 
k = t  o i 

o , ( x ,  Y ) = z , ( x )  - -  

+Z 
i 

a' (p3 
i 

6__y M x 2 

D' (m) 
h = l  0 ] 

pjD~h (pj) + Dah (Pj) exp (pjX)} gh (Y). 
D ~ (p j) 

With the aid of expressions (9) and (i0), we then obtain the solution to the boundary-value problem (i)-(8). 

Using the thus obtained analytical solutions, one can calculate the mean-mass temperature Om of the 
liquid as well as the Nusselt number and other characteristics of the heat transfer. The mean-mass temper- 
ature and the general Nusset number were indeed calculated numerically in this way, by the Bubnov-Galerkin 
method in the third-order approximation with a constant temperature of the wall and the liquid in the channel 
entrance section Ill =f2 = 0, r = I]. These calculations indicate that sufficiently reliable results can thus 
be obtained for the characteristics of heat transfer when 6 < 2. The changing of the mean-mass temperature 
of the liquid during cooling, with NRe = 104 and Npr = 0.7, is shown in Fig. i. The graph indicates that the 
cooling process can be slowed down appreciably by an increase of the wall thickness and a decrease of its ther- 
mal conductivity. The variation of the general Nusselt number [9] along the channel, with 6 -- 1.005 and K x = 
i000, during cooling and during heating of the liquid is shown in Fig. 2a and b respectively. The maximum value 
of the Nusselt number, NNu = 25.6 when NBr = 0, agrees with the result of another study [I0]. 

The results of this study suggest that dissipation of mechanical energy can greatly increase the local val- 
ues of the heat-transfereoeffieient. Such an increase is attributable, first of all, to a radical restrueturization 
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o z~oo 60O x 

Fig.  1. Var ia t ion of the m e a n - m a s s  
t e m p e r a t u r e  of the liquid (NRe = 104, 
N p r  = 0.7): 1) NBr = 0, 6 = 1.005, 
K~ = 1000; 2) NBr  = - 0 . 1 ,  6 = 1.005, 
K~ = 1000; 3) NBr = - 0 . 1 ,  6 = 1.2, 
K x = 20; fl =f2 = 0; ~(x) = 1. 

~o , . '  I @ 

Fig.  2. Var ia t ion  of the Nussel t  numbe r  along the channel with 
thin wall when (a) NBr  < 0 and (b) NBr  �9 0: NRe = 104; N p r  = 
0.7; 6 =1.005; K k =1000; fl  =f2 =0;  ~p(x) =1 .  
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Fig. 3. Var ia t ion of the Nusse l t  n u m b e r  along the 
channel with energy  diss ipat ion as well  as channel 
d imensions  and the rmophys ica l  p rope r t i e s  o f~han -  
nel wall  and of liquid taken into account.  

of the t e m p e r a t u r e  profi le  in connection with the sha rp  inc rease  of the t e m p e r a t u r e  gradients  at the channel 
wal ls ,  where  mechanica l  energy  is d i ss ipa ted  with pa r t i cu l a r ly  high intensity.  During heating this d iss ipat ion 
of energy  can re su l t  in r e v e r s a l s  of the the rma l  flux (negative values of the Nussel t  number ,  physical ly  m e a n -  
ingless) .  

The dependence of the h e a t - t r a n s f e r  intensi ty on the the rmophys iea l  p r o p e r t i e s  of the wall  and of the liquid 
as  well  as on the channel d imensions  is shown in Fig.  3. A compar i son  of the data he re  with those  in Fig .  2a 
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revea ls  that decreas ing  the thickness of the channel wall and decreas ing  the ra t io  K;~ will appreciably dec r ea se  
the length of the initial thermal  channel segment  and dec rease  the Nusselt  number  within this segment.  The 
resul ts  of these calculations and the thus obtained analytical  solution to the coupled problem of convective heat 
t r a n s f e r  can be util ized fo r  studying the role  of dissipation p rocesses  in the heat  t r an s f e r  during turbulent flow 
of a liquid through a plane slot  and the dependence of that heat t r a n s f e r  on the thickness of the slot  wall and on 
the p roper t i e s  of the walI mater ia l .  

N O T A T I O N  

| = (tl - t o ) / ( t in -  to), | = (t2 - t0)/(tm- to), Dimensionless  t empera tu re  of the liquid and dimensionless  
t empera tu re  of the wall, respect ively;  x, axial coordinate;  y, t r an sv e r se  coordinate;  X = 4X/NRe2h and Y = 
h / y ,  d imensionless  coordinates;  v ,  = w(~/8)5/2,  dynamic velocity; w, sect ion veloci ty of the liquid; ~, f r i c -  
tion coefficient;  2h, inside slot  dimension; 2h~, outside slot  dimension; u, kinematic viscosity;  ea ,  eddy v is -  
cosity;  p ,  dynamic viscosi ty;  W(u = Wx/V , , d imensionless  veloci ty profi le;  w x, axial project ion of the ve-  
locity vector;  Hi (i = 1, 2), the rmal  conductivity of the liquid and of the wall mater ia l  respect ively;  a ,  thermal  
diffusivity of the liquid; NRe = w 2 h / u ,  Reynolds number;  N p r  = ~ , / a ,  Prandt l  number;  NBr = #~2/~ l(tm _ to), 
Brinkman number;  ~ o = h v , / u ;  6 = h i / h ;  K k = ; t2 /k l ;  to, t empera tu re  in the entrance section of the hea t -  
t r a n s f e r  segment;  t m, t empera tu re  of the external  surface  of the tube wall on the heat exchanger  surface;  | 
| solutions to problems (11) and (12); and p, var iable  of Laplace integral  t ransformat ion .  
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